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Abstract—The importance of multi-armed bandit (MAB) prob-
lems is on the rise due to their recent application in a large
variety of areas such as online advertising, news article selection,
wireless networks, and medicinal trials, to name a few. The most
common assumption made when solving such MAB problems is
that the unknown reward probability θk of each bandit arm k is
fixed. However, this assumption rarely holds in practice simply
because real-life problems often involve underlying processes that
are dynamically evolving. In this paper, we model problems
where reward probabilities θk are drifting, and introduce a new
method called Dynamic Thompson Sampling (DTS) that facilitates
Order Statistics based Thompson Sampling for these dynamically
evolving MABs. The DTS algorithm adapts its success proba-
bility estimates, θ̂k, faster than traditional Thompson Sampling
schemes and thus leads to improved performance in terms
of lower regret. Extensive experiments demonstrate that DTS
outperforms current state-of-the-art approaches, namely pure
Thompson Sampling, UCB-Normal and UCBf , for the case of
dynamic reward probabilities. Furthermore, this performance
advantage increases persistently with the number of bandit arms.

I. INTRODUCTION

The multi-armed bandit (MAB) problem forms a classical

arena for the conflict between exploration and exploitation,

well-known in reinforcement learning. Essentially, a decision

maker iteratively pulls the arms of the MAB, one arm at

a time, with each arm pull having a chance of releasing a

reward, specified as the arm’s reward probability θk. The goal

of the decision maker is to maximize the total number of

rewards obtained without knowing the reward probabilities.

Although seemingly a simplistic problem, solution strategies

are important because of their wide applicability in a myriad

of areas.

Thompson Sampling based solution strategies have recently

been established as top performers for MABs with Bernoulli

distributed rewards [1]. Such strategies gradually move from

exploration to exploitation, converging towards only selecting

the optimal arm, simply by pulling the available arms with

frequencies that are proportional to their probabilities of being

optimal. This behavior is ideal when the reward probabilities

of the bandit arms are fixed. However, in cases where the

reward probabilities are dynamically evolving, referred to

as Dynamic Bandits, one would instead prefer schemes that

explore and track potential reward probability changes. Apart

from the Kalman filter based scheme proposed in [2], the

latter problem area is largely unexplored when it comes to

Thompson Sampling. Another important obstacle in solving

the problem is due to the fact that we cannot sample noisy

instances of θk directly, as done in [2]. Instead, we must

rely on samples obtained from Bernoulli trials with reward
probability θk, which renders the problem unique.

In this paper, we introduce a novel strategy — Dynamic

Thompson Sampling. Order Statistics based Thompson Sam-

pling is used for arm selection, but the reward probabilities θk

are tracked using an exponential filtering technique, allowing

adaptive exploration. In brief, we explicitly model changing

θk’s as an integrated part of the Thompson Sampling, consider-

ing changes in reward probability to follow a Brownian motion

– one of the most well-known stationary stochastic processes,

extensively applied in many fields, including modeling of stock

markets and commodity pricing in economics.

II. RELATED WORK

In their seminal work on MAB problems, Lai and Rob-

bins proved that for certain reward distributions, such as the

Bernoulli-, Poisson-, and uniform distributions, there exist an

asymptotic bound on regret that only depends on the logarithm

of the number of trials and the Kullback-Leibler value of each

reward distribution [3]. The main idea behind the strategy

following from this insight is to calculate an upper confidence

index for each arm. At each trial the arm which has the

maximum upper confidence value is played, thus enabling

deterministic arm selection. Auer et al. [4] further proved

that instead of an asymptotic logarithmic upper bound, an

upper bound could be obtained in finite time, and introduced

the algorithms UCB-1, UCB-2 and their variants to this end.

The pioneering Gittins Index based strategy [5] performs a

Bayesian look ahead at each step in order to decide which

arm to play. Although allowing optimal play for discounted

rewards, this technique is intractable for MAB problems in

practice.

Dynamic Bandits have also been known as Restless Bandits.

Restless Bandits were introduced by Whittle [6] and are

considered to be PSPACE-hard. Guha et al. [7] introduced

approximation algorithms for a special setting of the Restless

Bandit problem. Auer et al. [8] introduced a version of
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Restless Bandits called Adversarial Bandits, but the technique

suggested was designed to perform against an all powerful

adversary and hence led to very loose bounds for the reward

probabilities.

In this work, we look at the problem of Dynamic Bandits

in which the reward probabilities of the arms follow bounded

Brownian motion. In [9], the authors consider a similar sce-

nario of Brownian bandits with reflective boundaries, assuming

that a sample from the current distribution of θk itself is

observed at each trial. Granmo et al. introduced the Order

Statistics based Kalman Filter Multi-Armed Bandit Algorithm

[2]. In their model, reward obtained from an arm is affected

by Gaussian noise ∼ N(0, σ2
ob) and an independent Gaussian

perturbations ∼ N(0, σ2
tr) at each trial. A key assumption in

[2] is again that at each trial a noisy sample of the true reward

is observed. In contrast, in our work, estimation of the reward

probabilities θk is done by only using Bernoulli outcomes

rk ∼ Bernoulli(θk). Our work is thus well suited for

modeling of problems such as click through rate optimization

in the Internet domain, where a click on a newspaper article or

advertisement results in a binary reward, from which the click

through rate θk is estimated. Also, instead of using reflective

boundaries we consider absorbing and “cutoff” boundaries,

which are more suited for the Internet domain.

III. PROBLEM DEFINITION

A. Constant Rewards

For the MAB problems we study here, each pull of an arm

can be considered as a Bernoulli trial having the output set

{0, 1}, with the probability θk denoting the probability of

success (event {1}). The probability distribution of the number

of successes S obtained in nk Bernoulli trials is known to have

a Binomial distribution, S ∼ Binomial(nk, θk):

p(S = s|θk) =
(
nk

s

)
(1− θk)n−s(θk)s. (1)

This means that since the Beta distribution is a conjugate

prior for the Binomial distribution [10], Bayesian estimation

is a viable option for estimating θk. It is thus natural to use

the Beta distribution to obtain a prior fully specified by the

parameters (α0, β0):

p(θ̂k;α0, β0) =
xα0−1(1− x)β0−1

B(α0, β0)
. (2)

The posterior distribution after the nth trial can be defined

recursively. If a success is received at the nth trial, αn and βn

are identified as follows:

αn = αn−1 + 1, βn = βn−1. (3)

Conversely, if a failure is received at the nth trial, we have:

αn = αn, βn = βn−1 + 1. (4)

After s successes and r failures, the parameters of the posterior

Beta distribution thus become (α0+s, β0+r). The mean and

variance of this posterior, Beta(α0 + s, β0 + r), can be used

to characterize θk:

μ̂n =
αn

αn + βn
(5)

σ̂2
n =

(αnβn)

(αn + βn + 1)(αn + βn)2
. (6)

B. Pure Thompson Sampling (TS)

Thompson Sampling is a randomized algorithm that takes

advantage of Bayesian estimation to reason about the re-

ward probability θk associated with each arm k of a MAB,

as summarized in Algorithm 1. After conducting n MAB

trials, the reward probability θk of each arm k is esti-

mated using a posterior distribution over possible estimates,

Beta(αk
n, β

k
n) [11], and the state of a system designed

for K armed MABs can therefore be fully specified by

{(α1
n, β

1
n), (α

2
n, β

2
n), ...(α

K
n , βK

n )}.
For arm selection at each trial, one sample θ̂k is drawn

for each arm k from the random variable Θ̂k
n, Θ̂k

n ∼
Beta(αk

n, β
k
n), k = 1, 2, 3, ...,K, and the arm obtaining the

largest sample value is played. The above means that the

probability of arm k being played is P (θ̂k > θ̂1 ∧ θ̂k >
θ̂2 ∧ θ̂k > θ̂3...θ̂k > θ̂K), however, the beauty of Thompson

Sampling is that there is no need to explicitly compute this

value. Formal convergence proofs for this method have been

discussed in [1], [12].

Algorithm 1 Thompson Sampling (TS)

Initialize αk
0=2, βk

0 = 2.

loop
Sample reward probability estimate θ̂k randomly from

Beta(αk
n−1, β

k
n−1) for k ∈ {1, . . . ,K}.

Arrange the samples in decreasing order.

Select the arm A s.t. θ̂A = maxk{θ̂1, . . . , θ̂K}.
Pull arm A and receive reward rn.

Obtain αA
n and βA

n : αA
n = αA

n−1 + rn;

βA
n = βA

n−1 + (1− rn).
end loop

C. UCB Algorithm

The UCB-1 [4] algorithm computes an Upper Confidence

Bound (UCB) for each arm k: E[θ̂kn]+
√

2ln N
nk . Here E[θ̂kn] is

the average reward obtained from arm k when the number of

times arm k has been played is nk and N is the overall number

of trials so far. In this algorithm, the arm which produces the

largest UCB is played at each trial, and the UCBs are updated

accordingly.

UCB-Normal is a modification of the UCB-1 algorithm

for the case of Gaussian rewards. The bounds used in UCB-

Normal are E[θ̂kn]+

√
16 · qk−nk(θ̂k

n)
2

nk−1
ln(N−1)

nk where qk is the

sum of the square of the reward of arm k.

The UCBf algorithm [9] is a more general form of the

UCB − 1 algorithm that also incorporates Brownian mo-

tion with reflecting boundaries. In brief, the bound from
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UCB-1 is extendend with an additional bound component:

σk
√
8N log N , where σk is the volatility of arm k.

D. Dynamically Changing Reward Probabilities

The key assumption made in most MAB algorithms is that

the reward probabilities remain constant. In practice, it is rare

to have constant reward probabilities, and the algorithm that

we propose here explicitly takes into account changing reward

probabilities.

Brownian motion is a simple stochastic process in which the

value of a random variable at step n is the sum of its value

at time n− 1 and a Gaussian noise term ∼ N(0, σ2). In this

paper, we consider the time varying reward probability θn to

follow a simple Brownian motion in the range [0, 1]:

θn = θn−1 + νn, νn ∼ N(0, σ2) (7)

As θ is a probability, it must remain within [0, 1] — conse-

quently, we need to bound the Brownian motion of the reward

probabilities. We define two types of boundary properties:

• Cutoff Boundary: The reward probability is bounded

between [0, 1] and once it reaches a boundary it remains

there until the next outcome moves it out of the boundary.

θn =

⎧⎪⎨
⎪⎩

θn−1 + νn if 0 ≥ θn−1 + νn ≤ 1

1 if θn−1 + νn > 1

0 if θn−1 + νn < 0

• Absorbing Boundary: With absorbing boundaries θn re-

mains at the boundary forever after reaching it.

θn =

⎧⎪⎨
⎪⎩

θn−1 + νn if � ∃i ≤ n : θi ≥ 1 ∨ θi ≤ 0

1 if ∃i ≤ n : θi ≥ 1

0 if ∃i ≤ n : θi ≤ 0

The performance of MAB solution schemes can be mea-

sured in terms of Regret, defined as:

Regret = ΣN
n=0(r

∗
n − rkn).

Above, N is the total number of trials, r∗n is the Bernoulli

output one would receive by playing the arm with the highest

θkn at trial n, while rkn is the reward obtained after sampling the

kth arm as determined by the algorithm being evaluated. Note

that the arm corresponding to r∗n may change as the values of

θkn evolves. Hence, regret is a measure of the loss suffered by

not always playing the optimal arm.

E. Dynamic Thompson Sampling Algorithm (DTS)

Unlike the algorithms for static MAB problems, the goal of

the DTS algorithm proposed presently is to minimize the regret

by tracking the changing values of θkn as closely as possible.

Note that in our model θkn changes according to Eqn. 7 whether

arm k is played or not. The DTS algorithm is able to track

reward probabilities by replacing the update rules specified in

Eqn. 3 and 4 by two set of update rules and a threshold C
governing which set of update rules to use:

1) If αn−1 + βn−1 < C,

αn = αn−1 + rn (8)

βn = βn−1 + (1− rn) (9)

2) If αn−1 + βn−1 ≥ C,

αn = (αn−1 + rn)
C

C + 1
(10)

βn = (βn−1 + (1− rn))
C

C + 1
(11)

Notice that the first set of update rules makes the scheme

behave identical to Pure Thompson Sampling when αn−1 +
βn−1 < C, while the second set of update rules for αn−1 +
βn−1 ≥ C ensures that αn + βn never grows above C. I.e.,

for αn−1 + βn−1 = C we have:

αn + βn = (αn−1 + βn−1 + 1)
C

C + 1
(12)

= (C + 1)
C

C + 1
(13)

= C. (14)

Also, by updating the values of αn, βn according to rule set

2) above, more weight will be assigned to the more recent

rewards as opposed to older rewards. That is, if we continue

substituting the value of αn−1 in Eqn. 10 above, we get

αn =

(
(αn−2 + rn−1)

C

C + 1
+ rn

)
C

C + 1
(15)

= αn−2(
C

C + 1
)2 + rn−1(

C

C + 1
)2 + rn

C

C + 1
,(16)

whence, it becomes apparent that the weighting is exponential.

To summarize, the above strategy provides exponential

weighting of the outcomes of the trials, with the more recent

outcomes getting more weight. In the same manner, we could

express βn as a discounted sum of previous outputs of the

Bernoulli trials. Similarly, we observe that the mean μn of

Beta(αn, βn) at trial n is,

μn =
αn

αn + βn
(17)

=
αn−1 + rn

C
× C

C + 1
(18)

=
αn−1

C

C

C + 1
+ rn

1

C + 1
(19)

=
C

C + 1

αn−1

αn−1 + βn−1
+

1

C + 1
rn (20)

= Δ · μn−1 + (1−Δ)rn (21)

where Δ = C
C+1 . Clearly, this approach yields exponential

filtering of rn [13]. Observe finally that the variance σ2
n of

Beta(αn, βn) is bounded as follows:

0 ≤ σ2
n ≤

1

4(C + 1)
. (22)

This is the case because the variance of Beta(αn, βn) is

σ2
n =

(αnβn)

(αn + βn + 1)(αn + βn)2
.
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and because the product of αn and βn is maximized when

αn = βn = C/2 and minimized when either αn or βn

approaches 0.

Algorithm 2 Dynamic Thompson Sampling (DTS)

loop
Sample reward probability estimate θ̂k randomly from

Beta(αk
n−1, β

k
n−1) for k ∈ {1, . . . ,K}.

Arrange the samples in decreasing order.

Select the arm A s.t. θ̂A = maxk{θ̂1, . . . , θ̂K}.
Pull arm A and receive reward rn.

if αA
n−1 + βA

n−1 < C then
αA
n = (αA

n−1 + rn), β
A
n = βA

n−1 + (1− rn).
else
αA
n = (αA

n−1 + rn)
C

C+1 ,

βA
n = (βA

n−1 + (1− rn))
C

C+1 .

end if
end loop

The DTS algorithm introduced in this paper is based on the

above two sets of update rules and is specified in Algorithm

2 for the K-armed bandit case, where the motion of the corre-

sponding reward probabilities (θ1, θ2, θ3, .., θK) is Brownian.

The algorithm starts by initializing the priors αk
0=2, βk

0 = 2 for

all the arms, and then proceeds by gradually updating the αks

and βks as penalties and rewards are received. Because of the

exponential weighting of rewards, drifting reward probabilities

are tracked, which in turn leads to a better performance as will

be shown presently.

IV. EXPERIMENTS

In this section, we primarily evaluate the performance of the

DTS algorithm by comparing it with UCBf , TS and UCB-

Normal. Even though we have performed a large number

of experiments using a wide range of reward distributions,

we here only report the most important and relevant ones

due to limited space. We report the regret obtained as the

measure of performance of the different algorithms. As DTS is

a randomized algorithm, the regret becomes a random variable.

The expected value of the regret is estimated by repeating each

experiment 400 times.

A. Varying value of standard deviation σ

To get an insight into the Brownian motion of the reward

probability θ, we performed experiments in which we sim-

ulated the dynamics of θ for different values of standard

deviation. In Fig. 1, we show a sample plot of the curves

for 4 values of σ = {0.05, 0.01, 0.005, 0.001} starting with

θ0 = 0.5. The curve with standard deviation σ = 0.05 is

cutting across the boundaries 0 and 1 very often and accurate

learning seems unrealistic in this situation. The other graphs

with standard deviations σ = {0.01, 0.005, 0.001} are more

stable and seem more appropriate to model realistic learning

problems.

Fig. 1. Typical variations of the reward probability θ for different values of
standard deviations. θ0 = 0.5 in all cases.

Fig. 2. Plot shows the estimated and actual values of θ for the case of a
single arm. Estimated values are calculated based on TS algorithm.

B. Estimation vs. Actual

We perform these experiments to show how closely the

estimated values of θ̂ are to the actual value of θ for the case

of TS and DTS algorithms for a single arm. The two graphs,

Fig. 2 and Fig. 3, show the results for the estimated and actual

values of θ. We see that the DTS algorithm provides a muche

more accurate estimate of θ based on its exponential filtering,

when compared to the TS algorithm.

C. Tuning parameter C for DTS algorithm

Fig. 4 shows a plot of the root mean square error (RMSE)

obtained for different values of C and standard deviation σ
for 10, 000 trials in the DTS and TS algorithm for a single

arm. RMSE is measured as :

RMSE =

√
ΣN

n=1(θn − θ̂n)2

N
(23)

Note here that RMSE values averaged over 400 runs are

reported in the graph. In this experiment, we take two different

values of θ = {0.8, 0.5} and choose the standard deviation
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Fig. 4. Plots for RMSE for two different values of θ, 3 different values of standard deviation σ and with/without the exponential filtering for θ
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Fig. 3. Plot shows the estimated and actual values of θt for the case of a
single arm. Estimated values are calculated based on DTS algorithm.

in the set {0.005, 0.01, 0.05}. We notice that the graphs

for different values of θ, but same standard deviation, are

overlapping. We also observe that the value at which the

RMSE is minimum drops with increasing σ. This is because

higher values of σ leads to more dynamic arm probabilities,

hence a shorter reward history is required for estimating θ.

We next present an empirical evaluation of the different

MAB algorithms using tuned values of the model parameters.

D. Varying Standard Deviation

In the first experiment to evaluate the performance of

different MAB strategies, we vary the standard deviation σ of

θ. We consider a total of 10 arms, θopt = 0.6, and all the other

9 arms are generated from Uniform distribution U(0.6, 0).
Fig. 5, 6 show the regret obtained by using different standard

deviations for the SR method for 10, 000 trials for the case of

cutoff and absorbing boundaries. The different values of the

standard deviation are {0.001, 0.005, 0.008, 0.01, 0.02}. We

see that the DTS algorithm shows the least regret as compared

to other MAB strategies for both the cases of absorbing as well

as cutoff boundaries.
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Fig. 5. Plots of Regret comparing DTS with UCBf , UCB-Normal and TS
algorithms for the case of Cutoff Boundaries

E. Changing the number of arms

We perform this experiment to show the effect of increasing

the number of arms on the regret obtained for the case of

Brownian bandits. We set θmax = 0.6 and initially randomly

generate a set of 9 arms with reward probabilities in interval

(0.6, 0) using Uniform distribution, and add four arms from the

same set U(0.6, 0) for a total of 10K trials. We use σ = 0.005
as standard deviation for the DTS algorithm. As shown in

Fig. 7 and 8, the DTS algorithm performs much better than

the UCBf , Thompson Sampling and UCB-Normal algorithm.

The difference between UCBf and DTS algorithm grows as

the number of arms increase which shows that the UCBf

algorithm does not scale with the number of arms for either
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Fig. 6. Plots of Regret comparing DTS with UCBf , UCB-Normal and TS
algorithms for the case of Absorbing Boundaries
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Fig. 7. Plots of Regret comparing DTS with UCBf , UCB-Normal and TS
algorithms for the case of Cutoff Boundaries

absorbing and cutoff boundaries. We do not show the results

of UCB-Normal algorithm in Fig. 8 as it consistently shows

poor results for the case of absorbing boundaries also.

V. CONCLUSION

In this paper, we presented the Dynamic Thompson Sam-
pling (DTS) algorithm. DTS builds upon the Order Statis-

tics based Thompson Sampling framework by extending the

framework with exponential filtering capability. The purpose

is to allow dynamically changing reward probabilities to

be tracked over time. The experimental results and analysis

presented in this paper show that the DTS algorithm sig-

nificantly outperforms current state-of-art methods such as

UCBf , Thompson Sampling and UCB-Normal for the case

of dynamic reward probabilities possessing bounded Brownian

motion. We also observe an increasing performance improve-
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Fig. 8. Plots of Regret comparing DTS with UCBf , UCB-Normal and TS
algorithms for the case of Absorbing Boundaries

ment as the number of arms increases, which demonstrates

the usefulness of our proposed algorithm in large-scale MAB

problems. The DTS strategy can be further extended to include

variations such as mortal bandits, hierarchical bandits, as well

as strategies for identifying the k-best arms by introducing

immunity from elimination. We are also working on proving

the theoretical bounds of the DTS algorithm.
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