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Abstract 
Flight delay creates major problems in the 

current aviation system. Methods are needed to 
analyze the manner in which micro-level causes 
propagate to create system-level patterns of delay. 
Traditional statistical methods are inadequate to the 
task.  This paper proposes the use of Bayesian 
networks (BNs) to investigate and visualize 
propagation of delays among airports. The BN 
structure was developed from expert judgment and 
validated against empirical data.  Parameters were 
estimated using a novel empirical Bayes approach in 
which regression estimates were used to construct a 
Dirichlet prior distribution, which was then updated 
from multinomial samples. Empirical results 
demonstrate greater predictive accuracy using our 
empirical Bayes approach than linear regression or 
Bayesian analysis with non-informative prior 
distributions.  Our results clearly demonstrate the 
value of Bayesian networks for analyzing and 
visualizing how system-level effects arise from 
subsystem-level causes. 

Introduction 
The National Aviation System (NAS) is a large 

and complex stochastic system with thousands of 
interrelated components: administration, control 
centers, airports, airlines, aircraft, passengers, etc. 
The complexity of the NAS creates numerous 
difficulties in management and control. Among the 
most intractable of these problems is flight delay, 
with its attendant high cost to airlines, complaints 
from passengers, and difficulties for airport 
operations. Understanding and mitigating delays is a 
major long-term objective of the Federal Aviation 
Administration (FAA). As demand on the system 
increases, the delay problem becomes more and more 
prominent.  

A great deal of research attention has been 
devoted to identifying the causes of delay. Major 
contributing factors to delay are congestion at the 

origin airport, convective weather, reduced ceiling 
and visibility, continuously increasing demand and 
even changes in air traffic management (ATM) 
initiatives such as Ground Delay Programs (GDP). 
[7][8][9] Because the NAS is a stochastic control 
system, it must be characterized by probability 
density functions, and statistical analysis methods are 
necessary. Traditional linear and nonlinear regression 
methods have been applied to understand and explain 
the influences of weather, demand and other factors 
in the NAS system. [1][2] However, application of 
these methods has generally been limited to either 
single-airport analyses or aggregate analysis of the 
whole system.  There is a need for a methodology 
powerful enough to represent and analyze the impact 
of micro airport-level causes on macro system-level 
performance. 

Our new methodology combines multiple 
individual-airport Bayesian network models into a 
system-level model capable of representing 
interactions between airports. The system-level 
model provides a means of estimating interactions 
among delays at different airports. Three busy 
airports were selected for this study: Chicago O'Hare 
International Airport (ORD), LA Guardia Airport 
(LGA), and Hartsfield Atlanta International Airport 
(ATL). ORD and LGA are treated as originating 
airports and ATL is treated as the destination airport.  
We focus on investigating and quantifying how flight 
delays from a single airport propagate to impact other 
airports.  Our methodology was applied to the 
analysis of historical data from November 2003 to 
January 2004. 

Bayesian networks have become an increasingly 
important tool for investigating interdependence 
among multiple factors in complex systems. Bayesian 
networks have unique strengths both for inference 
and for visualization. When Bayesian networks are 
combined with traditional statistical methods, 
conditional independence can be exploited to provide 
more accurate estimation and therefore more precise 
prediction. 
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A Bayesian network (BN) is a directed acyclic 
graph, in which each node denotes a random variable, 
and each arc denotes a direct dependence between 
variables. The BN model structure (nodes and arcs) 
encodes conditional dependence relationships 
between the random variables. Each random variable 
is associated with a set of local probability 
distributions (parameters in the Conditional 
Probability Tables (CPT)). Probability information in 
a Bayesian network is specified via these local 
distributions. A root node in a BN model represents a 
random variable and its associated probability 
distribution. A non-root node has an associated 
random variable and a conditional distribution for its 
random variable given the values of the parent 
random variable(s). The Bayesian networks for this 
paper were built using the Netica™ software package 
[12]. Figure 1 shows part of a Bayesian network node 
as displayed by Netica™.  The random variable 
ORDDepDelay has a single parent, Weather, which 
has possible values VMC or IMC.  The CPT for 
ORDDepDelay is also shown in Figure 1.  The 
Weather node has been set to the value VMC.  This is 
indicated by a gray color of the node, and by a 
probability of 100% on VMC.  Because Weather has 
been set to VMC, the probability distribution for 
ORDDepDelay is the same as the row of the CPT 
corresponding to VMC. If the evidence that Weather 
is equal to VMC were removed, the corresponding 
node would be displayed in white, and its 
probabilities would revert to the prior distribution 
entered by the user or learned from observation.  This 
change would propagate automatically to 
ORDDepDelay, whose distribution would become a 
probability-weighted average of the two rows of the 
CPT. 

 
Figure 1.  Netica Notation 

The remainder of this paper is organized as 
follows. Section 2 describes the data used in our 
study, the BN model structure, and our parameter 
estimation methodology. We combine Netica’s 

discrete parameter estimation method with regression 
estimates from the original continuous data.  This 
combined approach is more powerful than either 
approach alone. Section 3 validates our model by 
comparing the prediction accuracy of several 
different approaches. Conclusions are presented in 
Section 4. 

Model Construction and Estimation 
Much research has been devoted to analyzing 

the causes of delay in the NAS. This research focuses 
on propagation of delay between airports. Delay 
propagation occurs when late arrivals at an airport 
cause late departures, which in turn cause late arrivals 
at the destination airports. Delay propagation is 
difficult to analyze using traditional methodology 
because it is inherently a system problem, operating 
at the interface between the micro (individual airport) 
and macro (aggregate) levels of the NAS.  Our new 
methodology is well-suited to studying such interface 
phenomena. 

Data Source 
The data in this paper were extracted from the 

FAA ASPM database Quarter Hour Report from 
November 1st 2003 to January 31st 2004. We 
selected Analysis By Quarter Hour Airport Report, 
EDCT (Expected Departure Clearance Time) Report, 
Daily Weather By Quarter Hour Report and City Pair 
By Quarter Hour Report. These reports were 
connected together and indexed by Date, Local hour 
and Quarter. 

Based on the ASPM definitions, we defined the 
variables in our BN model as follows. VMC refers to 
Visual Meteorological Conditions. IMC refers to 
Instrument Meteorological Conditions. Canceled 
Arrivals (canceledArr) refers to the total number of 
cancelled flights that had been scheduled to arrive at 
one of the 55 ASPM airports during a given 15 
minute period. Canceled Departures (canceledDep) 
refers to the total number of cancellations from the 
airport to any destination during a given 15 minute 
period. Airport Departure Delay (DepDelay) is an 
average estimated delay derived from the Actual 
Wheels Off minus the Flight Plan Gate Out less the 
Unimpeded Taxi Out Time, in minutes. Departure 
Delay at ORD to ATL (DepDelay_ORDtoATL) 
refers to the departure delay time at ORD of flights 
leaving for ATL, and similarly for DepDelay 
_LGAtoATL. Arrival Delay (ArrDelay) is the 
average difference between the Actual Gate In Time 
and Flight Plan Gate In Time in minutes. Arrival 
Delay at ATL from ORD (ArrDelay _ATLfrORD) 
refers to the arrival delay time at ATL of flights 
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coming from ORD, and similarly for ArrDelay 
_ATLfrLGA. Delay values may be negative, due to 
the fact that flights may arrive or depart early. 

To introduce different time phases into our 
model, we create “advance” data by connecting the 
departure data at ORD and LGA with arrival data at 
ATL after a given period of time. For example, to 
study the impact of departure delays at ORD between 
6:00am and 6:15am on the arrival delay at ATL 2 
hours later, we connect the 6:15am ORD data with 
9:15am ATL data.  (The 3-hour difference is due to a 
1-hour time zone difference and a 2-hour flight time.) 
Through this process, we created advance variables 
ArrDelay_ATLfrORD+2:00, ATLArrDelay+2:00, 
and so forth. 

We selected a sub-sample of 90% of the 
observations to build our model structure and to 
estimate parameters.  The remaining 10% of the data 
points were set aside to test the accuracy of model 
predictions. 

Model Structure 
Our initial BN model structure was developed 

using expert judgment. A statistical significance test 
was then conducted on pairs of nodes connected by 
an arc in the expert-elicited BN. Associations 
between the nodes in the structure listed below were 
statistically significant at level 0.05. 

Our basic model structure is shown in Figure 2.  
The top left corner describes the relationship among 

arrival delay, canceled departures, weather conditions 
and departure delay at ORD airport.  The output of 
this part of the model is ORDDepDelay, which 
connects to DepDelay_ORDtoATL. The node 
ORDDepDelay represents the average departure 
delay from ORD to 55 major airports in the ASPM 
system. The node DepDelay _ORDtoATL represents 
the departure delay of flights from ORD to ATL. 

For space reasons, the middle part of the 
structure shows only 2 time phases. Furthermore, 
although each advance variable in Figure 2 has only a 
single parent node, in our final model the arrival 
delay variables have several lagged parents (see 
Section 2.3 below). The group of nodes on the left 
describes how departure delay of flights from ORD 
to ATL affects the arrival delay at ATL of flights 
coming from ORD and how the arrival delay at ATL 
of flights coming from ORD related to the arrival 
delay at ATL of flight from all 55 airports after 1 
hour and 45 minutes. The departure delay from LGA 
to ATL is also included to compare the effect of LGA 
departure delay on ATL arrival delay with the effect 
of ORD departure delay. Our analyses indicate that 
departure delay from ORD to ATL has its greatest 
impact on arrival delay at ATL about 1 hour and 45 
minutes later; and that departure delay of flights from 
LGA to ATL has its greatest impact about 2 hours 
and 30 minutes later. Our analyses also show a strong 
impact of weather conditions and cancelled arrivals 
on ATL arrival delay. Details are reported in Section 
2.3 below. 

 
Figure 2.  BN Model Structure 
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Parameter Estimation 
Initial exploratory parameter estimation was 

performed using Netica’s parameter learning 
capability. Netica’s parameter learning assumes 
multinomial random variables with Dirichlet 
conjugate prior distributions. This method is 
appropriate for categorical random variables, when 
parameters for different categories are unrelated. 
Many of our random variables are continuous, and 
were discretized for representation in Netica. 
Parameters associated with neighboring discretized 
categories are expected to be similar. For this reason, 
multinomial / Dirichlet estimation has less statistical 
power than could be achieved with a more 
sophisticated approach.  Nevertheless, the estimates 
were useful for exploratory purposes – to compute 
initial parameter estimates and to visualize delay 
propagation among airports. 

Our exploratory analyses used a uniform prior 
distribution, that is: ),( ,1 pDirichlet !! ! where 

1,1 === p!! ! , and =p  number of states.  This 
prior distribution places equal density on all possible 
states for each node in the model. Because the 
Dirichlet prior is conjugate to the multinomial 
distribution, the posterior distribution can be obtained 
in closed form.  After 

i
n  cases have been observed 

for a random variable given particular values for its 
parents, the posterior distribution 
is ),,( 11 pp nnDirichlet ++ !! ! . The posterior 
expected value of the ith state for the given 
configuration of parents is ! ++ )(/)(

iiii
nn "" . 

While this analysis was useful for exploratory 
purposes, there are several reasons why a more 
sophisticated model is necessary.  As noted above, 
the multinomial / Dirichlet analysis requires the data 
to be discretized.  While sophisticated discretization 
methods exist [12], we used human judgment to 
discretize our data.  

More significantly, in the multinomial / 
Dirichlet model, each probability in a belief table is 
estimated independently of all the other probabilities.  
For continuous random variables, probabilities of 
nearby states are expected to be near each other.  
Ignoring these relationships wastes statistical power.  
Even with a relatively coarse discretization, there 
may be very few observations for some 
configurations of a random variable’s parents.  For 
such configurations, parameter estimates are highly 
imprecise.  Methods that incorporate information 

about nearby parent configurations provide much 
greater statistical power. 

Our second step estimates the parameters using 
regression analysis. We plotted pairs of delays to 
ascertain whether the relationship was linear.  If so, 
linear regression was applied to estimate the 
relationship between parent and child random 
variables. For example, if node D has parent nodes A 
and B, and the states of D are linearly related to the 
states of A and B, then the probability of states of 
node D given A and B was specified using Netica’s 
NormalDist function: 

      ),,(),|( 21 !""# BADNormalDistBADP ++= , 
where BA

21
!!" ++  is the mean of the normal 

distribution ),|( BADP , and σ is the standard 
deviation. 

We used the statistical package SAS to estimate 
the parameters !""# ,,, 21 , and entered the 
parameter estimates into a Netica equation.  Netica 
converted the equation into a conditional probability 
table for the discretized random variable. We then 
used this generated CPT (with a virtual count of 1) as 
the Dirichlet prior distribution.  That is, the prior 
distribution was ),( ,1 pDirichlet !! ! , where αi is 

the probability given by the above regression 
equation that an observation falls into the ith bin.  The 
posterior distribution is, as before, 

),,( 11 pp nnDirichlet ++ !! ! . 

• Arrival Delay vs. Departure Delay Within 
ORD airport 

Figure 3 shows a scatter plot of departure delay 
from ORD versus arrival delay into ORD. The scatter 
plot (a) of Figure 3 is for the original data.  The 
scatter plot (b) shows transformed data, using the 
transformation 2.02.0

',' yyxx == , where =x arrival 
delay in minutes and =y departure delay in minutes. 

 
(a) Raw Data 
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(b) Transformed Data 

Figure 3.  Scatter Plot of ORDDepDelay vs. 
ORDArrDelay 

Figure 3 (b) shows that when arrival and 
departure delays are less than or equal to zero (i.e., 
flights are on time or early), the data are scattered 
randomly over the space. After further investigation 
of these data, we found that over 99.5% of the on 
time arrivals and departures at ORD happened before 
8am and after 9pm; and 88.7% of the early departures 
happened before 8am and after 9pm. Departure and 
arrival times are difficult to predict during these time 
intervals. These time periods were handled separately 
by adding time as a control factor in our BN model. 
Our linear regreesion analyses are all conducted on 
the transformed data. 

The BN model of Figure 4 presents the 
relationship between arrival delay and departure 
delay between the hours of 8am and 9pm. The 
random variables ORDArrDelay and ORDDepDelay 
represent delays in minutes; and ORDcanceledDep 
represents the number of cancelled departures. 
Conditional on arrival delay into ORD, departure 
delay out of ORD has a unimodal distribution with 
mode near the value of the arrival delay.  When 
arrival delay is held constant and weather changes 
from VMC to IMC, the spread in the distribution 
becomes greater and the mean becomes smaller.  This 
is due to an increase in the number of cancelled 
departures under IMC (from 24.4% to 38.6%), which 
has a negative effect on departure delay. 

 

 
(a) VMC 

 
(b) IMC 

Figure 4.  Weather Effects on Arrival Delay vs. 
Departure Delay 

Figures 5 shows scatter plots of 919 data points 
taken during the 8AM to 9PM time period, and for 
which arrival delays were greater than 40 minutes.  
To achieve a more linear relationship, the raw arrival 
and departure time values were subjected to a power 
transformation with exponent 0.2.  The plots show a 
relationship between arrival delay and both departure 
delay and cancelled departures.  The regression line 
for transformed departure delays has a higher 
intercept and a steeper slope under VMC than under 
IMC.  For cancelled departures, the intercept is 
higher and the slop steeper under IMC than under 
VMC.  These results are consistent with the 
exploratory analysis described above, lending further 
support to the explanation that during poor weather, 
cancelled flights help to mitigate the propagation of 
departure delays from one airport to another. 

    (a) 

        (b) 

Figure 5.  Scatter Plots 
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• Departure Delay to Any Destination vs. 
Departure Delay to ATL 

Overall departure delay data (DepDelay) is 
calculated by aggregating departure delay for all 
airports (including ATL): 

21

2211

nn

ndnd
yORDDepDela

+

+
= . 

In the above expression, 
1
d  is the departure 

delay out of ORD for flights to ATL; 
2
d is the 

departure delay out of ORD for flights to other 
airports; 

1
n  is the number of flights departing from 

ORD to ATL during the 15 minute period; and 
2
n is 

the number of flights departing from ORD to airports 
other than ATL. 

Figure 6 shows the distributions of departure 
delay from ORD to ATL for three different values of 
the average departure delay from ORD.  (The 
FlightNum variable simply imposes the constraint 
that there was at least one flight out of ORD to ATL 
during the 15 minute period.) The plot clearly 
demonstrates a relationship between overall departure 
delay and departure delay to ATL, but the 
distributions are clearly non-Gaussian. 

 
(a)                              (b) 

 
(c) 

Figure 6.  Departure Delay to Any Destination vs. 
Departure Delay to ATL 

 

• Departure Delay to ATL vs. Arrival Delay at 
ATL 

This section analyzes the effect of departure 
delays out of the origin airports (ORD and LGA) on 
arrival delay at the destination airport (ATL). 
Initially, we perform separate analysis for ORD 
departure delay and LGA departure delay at each 
time phase. The results of this analysis are applied to 
build a new BN model for ATL that combines effects 
from different airports and different time phases. 

From ORD to ATL: As described in Section 2.1, 
we created “advance” variables to study the time 
difference at which the effects of delay at the origin 
airport are felt at the destination airport. Our original 
data were aggregated into 15-minute windows. To 
increase the number of observations in a given 
window, we constructed variables aggregated into 
half-hour windows by adding each quarter hour data 
to the next quarter hour data. For example, the data 
for 10:30am and the data for 10:15am, were 
combined to obtain an average value from 10:00am 
to 10:30am; the data from 10:45am and the data from 
10:30am were combined to obtain an average value 
from 10:15 am to 10:45am; and so forth. Figure 7 
shows how departure delays of flights from ORD to 
ATL propagate to generate arrival delays at ATL at 
several different time intervals after departure. 

In Figure 7, the departure delay of flights from 
ORD to ATL has been set to a value of 40 to 60 
minutes. The figure shows how the effect of this 
delay builds up and then dissipates over the time 
period shown.  The delay is not yet felt an hour and a 
quarter later, with only a 15.2% probability of a 40 to 
60 minute arrival delay at ATL from ORD. The 
probability increases to 29.5% after 1 1

2
 hours, and to 

34% after 1 3
4

 hours. It then decreases to 25.3% after 
2 hours, and to 21.2% after 2 1

4
 hours. The peak of 

delay propagation occurs at a time lag of 1 3
4

 hours. 
This result is consistent with the typical flight time 
from ORD to ATL. 

 
Figure 7.  ORD Departure Delay Propagation 
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Figure 8 shows a scatter plot of transformed 

ArrDelay_ATLfrORD vs. transformed DepDelay_ 
ORDtoATL+1:45, where as before, a power 
transformation was applied to achieve an 
approximately linear relationship. When both 
departure and arrival delay are greater than zero, the 
figure shows a correlation. There is no relationship 
between the variables when either departure or arrival 
is on-time or early. 

Regression analyses were perfomed with 
transformed ArrDelay_ATLfrORD as the dependent 
variable, and transformed DepDelay_ORDtoATL and 
number of canceled arrivals at ATL as the 
independent variables. The regressions were repeated 
for different weather conditions. The analysis was 
restricted to the case where both ArrDelay_ 
ATLfrORD and DepDelay_ORDtoATL are greater 
than zero. As shown in Table 1 the results were 
similar to the BN model. A comparison of different 
time phases showed the largest 2

R  values at 1 3
4

 
hours (see Table 1). In the first quadrant in Figure 8, 
the points under VMC condition show greater spread 
than the points under IMC condition.  This is 
reflected in lower 2

R  values under VMC than under 
IMC, as depicted in Table 1. 

 
Figure 8.  After 1 hour 45 minutes 

 

      Table 1.  Regression Results (ORD to ATL) 
Time Phases VMC 2

R  IMC 2
R  

1 hour 15 minutes 0.0484 0.4293 
1 hour 30 minutes 0.1405 0.5167 
1 hour 45 minutes 0.4346 0.6169 
2 hours 0.3117 0.4592 
2 hours 15 minutes 0.1051 0.2959 

 
In practice, there is greater interest in overall 

arrival delay at ATL airport than in arrival delay of 
flights from a single origin. To predict overall arrival 
delay, we fit another linear regression function on 
ATL airport arrival delay after 1 hour 45 minutes 
(ATLArrDelay+1:45) vs. departure delay at ORD of 

flights to ATL (DepDelay_ORDtoATL) and the 
number of canceled flight at ATL during the same 
time period (ATLcanceledArr+1:45), given that both 
delays are positive. 

The regression coefficient estimates under IMC 
are reported in Table 2. The effect of 
DepDelay_ORDtoATL and ATLcanceledArr+1:45 
on the arrival delay at ATL airport are statistically 
significant under both IMC and VMC weather 
condition, but because the  2

R is very low under 
VMC, only the IMC estimates are reported here. This    
regression model considers only the effect of 
departure delay from ORD and ignores the effects of 
departure delays from other airports. 

cry
21

!!" ++=  
where, 

=y ATLArrDelay+1:45  
=r DepDelay_ORDtoATL 
=c ATLcanceledArr+1:45 

 

Table 2.  Regression o Arrival Delay at ATL after 
1 hour and 45 minutes 

 Estimate T test P-value 

α 1.1262 12.83 <.0001 

1
!  0.4822 10.51 <.0001 

2
!  0.0376 4.94 <.0001 
2
R  0.4295   

 
From LGA to ATL: A similar analysis was 

performed for flights from LGA to ATL. The typical 
duration of a flight from LGA to ATL is longer than 
from ORD to ATL. The difference is apparent from 
the BN model for LGA to ATL shown in Figure 9. 

In Figure 9, the departure delay of flights from 
LGA to ATL has been set to greater than 60 minutes.  
The figure shows the buildup of delay into ATL.  The 
probability of an arrival delay from ATL of greater 
than 60 minutes increases from 32.5% after 2 hours 
to 66.7% after 2 1

4
 hours, to achieve 68.6% after 2 1

2
 

hours, then decreases to 63.5% after 2 3

4
 hours, and 

to 21.7% after 3 hours. Transformed arrival delays 
into ATL from LGA at different time phases were 
regressed against transformed departure delay from 
LGA to ATL and number of canceled flights to ATL, 
given that both delays are positive. Results shown in 
Table 3 are consistent with the BN model. The 
highest 2

R  values appear after 2 1

2
 hours. 
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Figure 9.  LGA Departure Delay Propagation 

 

Table 3.  Regression Results (LGA to ATL) 

Time Phases VMC 2
R  IMC 2

R  
2 hours 0.3630 0.1836 
2 hours 15 minutes 0.5511 0.3323 
2 hours 30 minutes 0.6681 0.3826 
2 hours 45 minutes 0.5783 0.3581 
3 hours 0.2489 0.1185 

 
As above, we also performed a regression 

analysis for overall arrival delay at ATL 
(ATLArrDelay+2:30) vs. departure delay from LGA 
to ATL (DepDelay_LGAtoATL) and cancellations of 
flights to ATL (ATLcanceledDep+2:30). The 
regression coefficient estimates under IMC are 
reported in Table 4. Departure delay at LGA of 
flights to ATL has a statistically significant effect on 
arrival delay at ATL airport after 2 hours and 30 
minutes. This regression model considers only the 
effect of departure delay from LGA and ignores the 
effects of delays from other airports. 

Table 4.  Regression on Arrival Delay at ATL 
after 2 hours and 30 minutes 

 Estimate T test P-value 

α 0.8169 9.58 <.0001 

1
!  0.5992 13.72 <.0001 

2
!  0.0527 7.45 <.0001 
2
R  0.4671   

 
 
ATL Model: We built our second database using 

the results of the above analysis. In this database, 
instead of creating  “advance” data for ATL at a 
certain time period after departures from the 

originating airport, we created lag data from the 
originating airport at a certain time interval before 
arrival at ATL. We created lagged data for ORD t 1 3

4
 

hours before arrival at ATL (DepDelay_ORDtoATL-
1:45), and lagged data for LGA 2 1

2
 hours before 

arrival at ATL (DepDelay_LGAtoATL-2:30). These 
random variables provide a way to measure the 
combined effects of delays from different originating 
on arrival delay at ATL. The parameters of the BN 
model of Figure 10 were learned from the second 
database. 
 

 
Figure 10.  Departure Delay Effects on Arrival 

Delay 

A regression was performed using observations 
for which there are late departures to ATL from both 
ORD and LGA, and there are late arrivals at ATL 
from both ORD and LGA. Both these independent 
variables had statistically significant effects. The 
regression estimations are reported in Table 5. 

cgry
321

!!!" +++=  
Where, 

=y ATLArrDelay  
=r DepDelay_ORDtoATL 
=g DepDelay_LGAtoATL 
=c ATLcanceledArr 
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Table 5.  Regression Results (ATL) 

 Estimation T test P-value 

α 0.7910 5.18 <.0001 

1
!  0.4394 4.87 <.0001 

2
!  0.2260 2.92 0.0051 

3
!  0.0428 4.69 <.0001 
2
R  0.7185   

 
Comparing this result to the previous analyses,  

the estimated value of arrival delay at ATL 
(ATLArrDelay) from DepDelay_ORDtoATL and 
DepDelay_LGAtoATL are more accurate than 
regressing on either airport alone. 

  BN Model Validation 
The BN structure was validated and the 

parameters were estimated using 90% of the 
observations collected between November 2003 and 
January 2004. The remaining 10% of the 
observations were withheld to test the model and 
evaluate its prediction accuracy. The node 
ATLArrDelay, arrival delay at ATL, in ATL model 
was chosen for this purpose. During the testing 
process, the values of ATLArrDelay are treated as 
unknown. For evaluation, we used Netica’s built-in 
capability for evaluating the prediction accuracy of a 
model. The evaluation is conducted by passing 
through the cases in the data file one by one. For each 
case, Netica reads in the values of nodes in this row 
of data, except the value for ATLArrDelay node. A 
probability distribution is generated for this node 
based on the values of the other variables in the case 
and the parameters learned from the 90% training 
sample. The prediction is then compared with the true 
value of the node as supplied in the data file. Several 
different measures of prediction accuracy are 
available. Our evaluation is based on the confusion 
matrix, which provides information about the 
likelihood Netica assigns to each of the discrete bins, 
conditional on the bin in which the true value lies.  

As noted above, we found delay propagation 
effects only when arrival delays at ATL are positive. 
We restricted our evaluation to cases in which there 
was positive overall arrival delay at ATL, and also 
positive arrival delay at ATL of flights from both 
ORD and LGA. There are 58 data points in our 
training set and 21 data points in our testing set that 
meet these criteria. 

The following tables report the confusion 
matrix for predicting ATL Arrival Delay using 

different parameter estimation methods. Bin1 refers 
to arrival delay less than 15 minutes, Bin2 refers to 
arrival delay greater or equal to 15 minutes but less 
than 25 minutes, Bin3 is 25 to 40 minutes, Bin4 is 40 
to 60 minutes and Bin5 refers to greater or equal to 
60 minutes. Matrix (a) shows results based on a 
Netica BN model with parameters estimated from the 
training set using a uniform prior distribution. Matrix 
(b) shows results based on the linear regression 
model. Matrix (c) shows results based on the same 
Netica BN model, but using the linear regression 
equation as the prior distribution, and updating the 
CPT by learning from cases. If all incorrect 
predictions are given equal weight, then the error rate 
is: 

%100
#

#
!=

"
casestotal

casesctedwrongpredi
ErrorRate  

 

Table 6.  Confusion Matrix (a): Uniform Prior 

 Bin1 Bin2 Bin3 Bin4 Bin5 
Bin1 0 0 1 0 0 
Bin2 0 1 0 0 0 
Bin3 1 0 5 0 0 
Bin4 1 0 1 2 0 
Bin5 3 0 0 1 5 
 Error rate = 38.1% 

 

Table7.  Confusion Matrix (b): Regression Only 

 Bin1 Bin2 Bin3 Bin4 Bin5 
Bin1 1 0 0 0 0 
Bin2 0 0 1 0 0 
Bin3 1 2 2 1 0 
Bin4 2 1 1 0 0 
Bin5 0 1 2 1 5 
 Error rate = 61.9% 

 

Table 8.  Confusion Matrix (c): Informative Prior 

 Bin1 Bin2 Bin3 Bin4 Bin5 
Bin1 0 0 1 0 0 
Bin2 0 1 0 0 0 
Bin3 0 0 6 0 0 
Bin4 0 0 1 3 0 
Bin5 0 0 2 0 7 
 Error rate = 19.1% 

 
A comparison of these error rates shows clearly 

that our empirical Bayes estimation method 
outperforms both multinomial learning with a 
uniform prior distribution and linear regression alone.  
Interestingly, multinomial learning with a uniform 
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prior distribution performed better than linear 
regression alone. We suspect this is due to a poor fit 
of the normal distribution to our data. Although the 
normal model performed poorly on its own, it 
provided useful information to develop an 
informative prior distribution for Bayesian learning.  

Conclusions 
This research demonstrates the utility of 

Bayesian networks as a tool for studying how 
subsystem-level causes propagate to system-level 
effects.  Our models provide a clear demonstration of 
how delays at an origin airport propagate to create 
delays at a destination airport. The models can take 
account of variables such as weather effects and 
flight cancellations. While the present study 
considered only a small part of the huge national 
aviation system, it is clear that the method could be 
extended to include additional airports. Bayesian 
networks provide a parsimonious language for 
representing both the internal behavior of subsystems 
and the interconnections between subsystems. Thus, 
Bayesian networks provide a powerful tool for 
analyzing the interface between micro and macro 
level phenomena.  

Another advantage of Bayesian networks is the 
ability to provide approximate models for complex, 
poorly understood problems, especially for parts of 
the problem with insufficient data for traditional 
statistical analysis. Previous studies have applied 
Bayesian networks to aviation systems. In one study, 
Bayesian networks were used as a demonstration of 
decision framework. [6] Another study found that the 
use of Bayesian networks did not provide useful 
information because of missing data and unmeasured 
factors.[5] Our study demonstrated that integrating 
human judgment with statistical analysis in structure 
construction and parameter estimation can not only 
save time and effort, but improve prediction accuracy 
as well. 

The software package Netica we used is limited 
to discrete variables. Some information may be lost 
in the disretization process. Our empirical Bayes 
parameter estimation method used linear regression, 
but our analysis identified situations where linear 
regression could not be applied, thus limiting the 
applicability of our technique. There are numbers of 
aviation databases describing the system performance 
from different perspective. Many factors which can 
affect airport delay such as demand, en route 
weather, aircraft type are not included in our model. 
We expect that a more complex and sophisticated 
model based on more complete data could achieve 
more accurate predictions.  Nevertheless, the 

approach developed in this paper shows promise as 
an important new tool for studying how system-level 
effects arise from subsystem-level causes. 
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